Точность прогнозов

Основными критериями при оценке эффективности модели, используемой в прогнозировании, служат точность прогноза и полнота представления будущего финансового состояния прогнозируемого объекта. Вопрос с точностью прогноза несколько более сложен и требует более пристального внимания. Точность или ошибка прогноза - это разница между прогнозным и фактическим значениями. В каждой конкретной модели эта величина зависит от ряда факторов.

Чрезвычайно важную роль играют исторические данные, используемые при выработке модели прогнозирования. В идеале желательно иметь большое количество данных за значительный период времени. Кроме того, используемые данные должны быть "типичными" с точки зрения ситуации. Стохастические методы прогнозирования, использующие аппарат математической статистики, предъявляют к историческим данным вполне конкретные требования, в случае невыполнения которых не может быть гарантирована точность прогнозирования. Данные должны быть достоверны, сопоставимы, достаточно представительны для проявления закономерности, однородны и устойчивы.

Точность прогноза однозначно зависит от правильности выбора метода прогнозирования в том или ином конкретном случае. Однако это не означает, что в каждом случае применима только какая-нибудь одна модель. Вполне возможно, что в ряде случаев несколько различных моделей выдадут относительно надежные оценки. Основным элементом в любой модели прогнозирования является тренд или линия основной тенденции изменения ряда. В большинстве моделей предполагается, что тренд является линейным, однако такое предположение не всегда закономерно и может отрицательно повлиять на точность прогноза. На точность прогноза также влияет используемый метод отделения от тренда сезонных колебаний - сложения или умножения. При использовании методов регрессии крайне важно правильно выделить причинно-следственные связи между различными факторами и заложить эти соотношения в модель.

Прежде чем использовать модель для составления реальных прогнозов, ее необходимо проверить на объективность, с тем чтобы обеспечить точность прогнозов. Этого можно достичь двумя разными путями:

Результаты, полученные с помощью модели, сравниваются с фактическими значениями через какой-то промежуток времени, когда те появляются. Недостаток такого подхода состоит в том, что проверка "беспристрастности" модели может занять много времени, так как по-настоящему проверить модель можно только на продолжительном временном отрезке.

Модель строится исходя из усеченного набора имеющихся исторических данных. Оставшиеся данные можно использовать для сравнения с прогнозными показателями, полученными с помощью этой модели. Такого рода проверка более реалистична, так как она фактически моделирует прогнозную ситуацию. Недостаток этого метода состоит в том, что самые последние, а, следовательно, и наиболее значимые показатели исключены из процесса формирования исходной модели. В свете вышесказанного относительно проверки модели становится ясным, что для того, чтобы уменьшить ожидаемые ошибки, придется вносить изменения в уже существующую модель. Такие изменения вносятся на протяжении всего периода применения модели в реальной жизни. Непрерывное внесение изменений возможно в том, что касается тренда, сезонных и циклических колебаний, а также любого используемого причинно-следственного соотношения. Эти изменения затем проверяются с помощью уже описанных методов. Таким образом, процесс оформления модели включает в себя несколько этапов: сбор данных, выработку исходной модели, проверку, уточнение - и опять все сначала на основе непрерывного сбора дополнительных данных с целью обеспечения надежности модели.

Перейти на страницу:
1 2

Статистика

О кредите

Кредит или кредитные отношения — это такие сделки, при которых одна сторона уступает другой в собственность какие-либо ценности, на условиях возвратности (т.е. кредит должен быть возвращён в будущем), платности (т.е. за пользование кредитом будут взяты проценты) и срочности (т.е. установлен срок возврата кредита).